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1 Introduction

According to the concepts of present-day cosmology, stars and magnetic fields in them are believed to originate
and form at the same time. The mechanism of origin of magnetic fields in a primordial gaseous-dust cloud and
an originating star is open to question. Further, it seems unquestionable that magnetic fields are interrelated
with currents in the stellar plasma. This is why, the effect of friction caused by resistance must result in the
diminishing of the currents and thereby of magnetic induction in long-duration existence of a star. A number
of “dynamo” mechanisms that lead to strengthening of a magnetic field have been substantiated theoretically.
By some notions, the presence of such mechanisms in a star may compensate for friction losses (Priest 1985).
However, it is doubtful that these mechanisms do actually occur widely and are efficient in stars.

Besides, all these “dynamo” mechanisms have one common disadvantage: they are not operative if the
initial magnetic field is absent altogether. For this reason, it has to be assumed that the energy of the magnetic
field of a star does not drop below a certain threshold value. If this does occur, then the magnetic field cannot
be restored even at powerful dynamic processes in the star. This appears to be improbable and is likely to
be inconsistent with observational data, in particular, for the Sun. Thus, the problem of origin and keeping
of the magnetic field in stars proves to be quite urgent and is far not only from the solution, but also from
the universally adopted interpretation.

The present paper advances for discussion a mechanism of origin of a magnetic field in the stellar plasma
from a “zero” state. The currents caused by vortical processes in the stellar plasma are shown to be accom-
panied by the origin of a related magnetic field.

2 General characteristics of stellar plasma

To simplify the posed problem, we consider that matter in the region studied, where the vortex process
takes place, is constituted from ionized hydrogen. Within the framework of the problem being discussed,
this assumption holds sufficiently true for the Sun, in which, as far as the number of atoms is concerned,
hydrogen accounts for more than 87%. Hydrogen is mostly ionized at the temperature T > 100000K (Priest
1985; Lifshits, Pitaevsky 1979).

The hydrogen plasma is a combination of two components: monoatomic gas of protons and monoatomic
gas of electrons. Designate the concentration (specific number per unit volume) of electrons as ne, and protons
as ni. The specific volume charge of electrons is qe = −nee, while that of protons is qi = nie (e = 1.602·10−19C
is the elementary charge). The net specific charge has the density q = qi − qe.

The potential ϕ and the intensity Ēn = −gradϕ of the electric field in the plasma depend on the
density of the net charge (Ēn = div q/ε0, ε0 = 8.85 · 10−12 F/m is the electric constant) (Matveev 1980).
Having originated, the potential electric field prevents from further division of charges. Because of the large
elementary charge, the difference in concentrations of protons and electrons is small | ni − ne |<< ni (Priest
1985). In most of the relationships this difference is insignificant. This is why, unless otherwise specified, we
consider the concentrations of protons and electrons to be equal, n ≡ ni

∼= ne.
The electric forces affecting unit volumes of protons and electrons are

f̄i = −ne gradϕ, f̄e = ne gradϕ = −f̄i, (1)

respectively.
The mass density of the electron gas is ρe = men, (me = 9.1091 · 10−31 kg is the mass of the electron),

while the mass density of the proton gas is ρi = min (mi = 1.67252 · 10−27 kg is the mass of the proton).
The ratio of densities of the gases corresponds to that of the masses of the electron and proton
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ρe

ρi
=
me

mi
=

1

1836
. (2)

The pressures of the gases of protons and electrons are equal to pi = nikTi, pe = nekTe, respectively
( k = 1.3805·10−23 J/K is Boltzmann’s constant, Ti, Te are the temperatures of the gases) (Lifshits, Pitaevsky
1979). These gases occupy one and the same volume, rapid heat exchange occurs between them. This is
why the proton and electron gases are at thermal equilibrium, and their temperatures are practically equal
everywhere, Ti = Te ≡ T , although they may change over the volume of the star. Thus, the equal partial
pressures of the proton and electron gases (since ni = ne), following Dalton’s law are equal to half the total
pressure of the plasma, pi = pe = p/2.

In the field of gravity the specific force f e = ρeg has an effect on the electron gas, while the proton gas is
affected by the force f i = ρig, where g = −gr/r is the acceleration of gravity directed towards the center. As
is known (Lojtsyansky 1987), the gravity acceleration has a potential function g = −gradG. In a particular
case, where the acceleration is constant, G = gr.

3 Viscosity of hydrogen plasma and its components

The viscosity of the components of the hydrogen plasma is characterized by the dynamic viscosity ηi of the
proton gas and ηe of the electron gas and also by the coefficient of mutual friction of the gases η. The mutual
motion of the gases of protons and electrons occurs under the action of forces equal in value but of opposite
directions. We believe that the force τ̄i = dF̄ /dV has an effect on a unit volume of the proton gas, while the
electron gas is under the action of the force τ̄e = −τ̄i. The external force that influences the gas of protons is
counterbalanced by the force of friction acting upon this gas from the gas of electrons, τ̄ei = −τ̄i. The same
holds for the gas of electrons, τ̄ie = −τ̄e.

The difference v̄i − v̄e between the mean velocities of protons, v̄i, and electrons, v̄e, depends on the
indicated specific forces and the coefficient of mutual friction η(N · s/m4)

τ̄i = −τ̄e = η (v̄i − v̄e) . (3)

The motion of protons and electrons gives rise to corresponding currents with densities j i = nev̄i and
je = −nev̄e. The total current density in the stellar plasma depends on the sum of these densities

j = ji + je = ne (v̄i − v̄e) .

With this equality taken into account, formula (3) may be rewritten as follows:

τ̄i = −τ̄e =
η

ne
j. (4)

The value of the mutual viscosity coefficient η and the plasma conductivity are interrelated. To prove
this, note that at some arbitrary intensity E the electric field affects the volume electric charge of the proton
gas with a specific force τ̄i = E ne. Under the action of these forces (if other forces of non-electric origin are
absent) the mutual motion of electrons and protons occurs in accordance with (Lojtsyansky 1987)

E ne = η (v̄i − v̄e) .

Multiply both sides of this equality by ne

E n2e2 = η n e (v̄i − v̄e) .

By extracting here the cofactors corresponding to the current density, obtain

j =
n2e2

η
E. (5)

Ohm’s law is written in a differential form in the following manner j = γE (γ is the conductivity).
Consequently, the coefficient at the intensity in (5) is the plasma conductivity and

γ = n2e2/η, η = n2e2/γ. (6)
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The viscosities of the proton and electron gases increase sharply with temperature (as T 5/2) (Lifshits,
Pitaevsky 1979). However, the ratio of viscosities remains unchanged and is defined by the square root of the
mass ratio of the proton and electron (Lifshits, Pitaevsky 1979):

ηe

ηi
≡

√

me

mi
=

1

42.8
. (7)

The coefficient of mutual friction η decreases with increasing temperature. However, it is very large as
compared to the viscosity coefficients of the proton and electron gases in the temperature range 105 − 107K.
That is why, the value of the velocity difference between the gases of protons and electrons is smaller than
the plasma resultant velocity, determined by the velocity of the proton gas, v̄ ≈ v̄i

|v̄i − v̄e| < |v̄| . (8)

In (Priest 1985) is presented a relationship between plasma conductivity and temperature

γ = 1.53 · 10−2
T 3/2

Le
, (9)

in the ranges of variations of temperatures 104 − 107 K and concentrations of particles 1012 − 1027 m−3

Coulomb multiplier has been calculated as 5.54 < Le < 25.1.

4 Hydrodynamics of plasma at a weak magnetic field

Within the framework of the primary treatment we consider the plasma conductivity to be low and the
originating magnetic field to be weak. Then, the forces arising from the interaction between the currents in
the plasma and the magnetic field are comparatively weak, and the inductive currents are practically absent.
If the forces resulting from the interaction between the magnetic field and the currents were not taken
into account, then the laminar flow of incompressible plasma could be described by modified Navier–Stokes
equations (Lojtsyansky 1987)

ρi
dv̄i

dt
= −grad (p/2) − ne gradϕ− ρi gradG+ ηi∆v̄i + τ̄ei (10)

ρe
dv̄e

dt
= −grad (p/2) + ne gradϕ− ρe gradG+ ηe∆v̄e + τ̄ie. (11)

The former was written for the proton gas, the latter for the electron gas. The equations are related to
each other since the addend τ̄ei defines the specific force of friction acting on the proton gas from the electron
gas, while τ̄ie = −τ̄ei defines the corresponding counterforce for these gases. These specific forces depend on
the difference in the mean velocities of protons and electrons and on the coefficient of mutual friction of the
gases η (3).

A set of equations similar to (10, 11) is written in (Kulikovsky, Lubimov 1962) for the general case (the
plasma is not completely ionized and not purely hydrogen, the action of the magnetic field is taken into
account).

We use the estimates made and the relations for the velocities of the proton and electron gases, pressure,
potential electric field force and mutual friction force for substituting into the initial equations (10, 11) :

ρi
dv̄

dt
= −grad(p/2) − ne grad ϕ− ρi gradG+ ηi∆v −

ne

γ
j, (12)

ρe
dv̄

dt
= −grad (p/2) + ne grad ϕ− ρe gradG+ ηe∆v +

ne

γ
j. (13)

The equations of continuity for the charge and mass density have, respectively, the form (Matveev 1980;
Lifshits, Pitaevsky 1979):

∂q

∂t
+ div j = 0,

∂ρ

∂t
+ div (ρ v) = 0. (14)
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Since in stationary and close to stationary dynamic processes the local mass density is not time variable
(∂ρ/∂t = 0), and the charge density in all processes is close to zero (q ≈ 0), then the set of equations (10,
11) should be added by the equalities

div j = 0, div v = 0. (15)

Summing up equations (13, 14), and with allowance made for the previous estimates, obtain

ρ
dv̄

dt
= −grad p+ ρg + (ηi + ηe) ∆v̄, (16)

where v = vi ≈ ve, ρ ≈ ρi are the velocity and density of the plasma, respectively.
In the absence of a magnetic field in the completely ionized hydrogen plasma electric properties of protons

and electrons cancel out and prove to be insignificant with respect to hydrodynamic parameters, and the
influence of the electron gas, as compared to the gas of protons, causes the pressure to rise (pi → p = 2pi)
and results in some increase in the friction coefficient.

To exclude the Laplacian of velocity, multiply both sides of equation (12) by the multiplier

ηe

ηi
=

1

42.8

and then subtract equation (13) from the obtained equality. Derive the following relationship:

√
ρiρe

dv̄

dt
= (1 − ηe

ηi
) grad (p/2) − (1 +

ηe

ηi
) · ne gradϕ −√

ρiρe gradG− (1 +
ηe

ηi
)
ne

γ
j, (17)

where it is taken into account that the density ratio of the proton and electron gases (2), equal to 1/1836, is
essentially smaller than the value of the indicated multiplier.

Since the quantity
ηe

ηi

∼=
√

ρe

ρi
=

1

42.8

is small in comparison with unity, it may be neglected in the multipliers. Then obtain

√
ρiρe

dv̄

dt
= grad (p/2) − ne gradϕ−√

ρiρegradG− ne

γ
j. (18)

Perform the operation rot on both sides of this equality. Here we consider that the densities of the electron
and proton gases, plasma conductivity and concentration of particles change with distance slowly and are
actually constant coefficients in the differential functions grad in (18). Since rot gradψ = 0, we have

√
ρiρe

dΩ̄

dt
= −ne

γ
rotj, (19)

where Ω = rotv is the vorticity of the plasma.
Substituting the equalities ρi = nmi, ρe = nme into (19), reduce this formula to the following form

rot j = −aγ dΩ̄
dt
, (20)

where a =
√
mime/e = 2.436 · 10−10 kg/C.

The first equation of Maxwell for statics has the form rotB̄ = µ0j, (B is the magnetic induction, µ0 =
4π · 10−7 H/m is the magnetic constant) (Matveev 1980). Substituting the current density from this equality
into (20), obtain

rot rot B̄ = −aµ0γ
dΩ̄

dt
. (21)

Using the known formula

grad div B = rot rotB + ∆B

and taking into account that div B̄ = 0 (Lifshits, Pitaevsky 1979), obtain
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∆B̄ = aµ0γ
dΩ̄

dt
. (22)

The set of Navier–Stokes equations (10, 11) is reduced to two separate equations: the known (Priest 1985;
Kulikovsky 1962) Navier–Stokes equation for the plasma as a whole (16) and the one (22) that we obtained
for the first time, which characterizes the relation between vorticity and induction of the field initiated by the
vortical process. The magnetic induction is in direct proportion with the plasma conductivity. That is why,
the original condition that the magnitude of induction of a field being formed should be small is complied
with at low plasma conductivity.

The difference between the viscous (7) and inertial (2) properties of the proton and electron gases formed
a foundation for deriving (22). Turbulent viscosities of the proton and electron gases may be by several orders
of magnitude higher than molar. However, as it follows from the theory of the way of mixture of Prandtl
(Lojtsyansky 1987), the ratio of turbulent viscosities is the same as that of molecular viscosities. For this
reason, the final relationship (22) characterizes the connection between plasma vorticity and induction of a
magnetic field being formed not only in laminar, but also in turbulent motion.

5 Complete set of equations of magnetohydrodynamics in vortical

processes

As is known (Matveev 1980), the induced electromotive force (e.m.f.) appears as a conductor moves in a
magnetic field. This e.m.f. is characterized by the intensity E = [vB] equal to the vector product of the
conductor speed v into magnetic field induction B.

Apply the indicated formula separately to the motion of the proton and electron gases. Derive that the
corresponding intensities are Ei = [viB], Ee = [veB]. The specific volume forces affecting the gases because
of interaction with the magnetic field are f i = ne [viB], fe = −ne [veB]. Introducing the corresponding
summands into equations (12, 13), obtain the initial set of equations of magnetohydrodynamics of the fully
ionized hydrogen plasma

ρi
dv̄

dt
= −grad(p/2) − ne gradϕ− ρi gradG+ ηi∆v −

ne

γ
j + ne [viB], (23)

ρe
dv̄

dt
= −grad (p/2) + ne grad ϕ− ρe gradG+ ηe∆v +

ne

γ
j − ne [veB]. (24)

Summing up these equations, derive an equation of magnetohydrodynamics of the plasma as a whole with
allowance for gravity, viscosity and forces of interaction of the magnetic field with the currents (Priest 1985;
Kulikovsky, Lubimov 1962)

ρ
dv̄

dt
= −grad p+ ρg + (ηi + ηe) ∆v̄ + [j B]. (25)

When adding together the last summands of equations (24, 25), the following chain of equalities was taken
into account

ne [vi B] − ne [ve B] = [(ne vi)B] + [(−ne ve)B] = [ji B] + [ je B] = [(ji + je)B] = [j B].

As in deriving equation (18), multiply (23) into the multiplier

ηe

ηi
≡

√

me

mi
=

1

42.8

and after that subtract equation (24) from the equality obtained. Derive the following actually exact equation:

√
ρiρe

dv̄

dt
= grad (p/2) − ne grad ϕ−√

ρiρegradG− ne

γ
j + ne [v B]. (26)

The following chain of equalities was allowed for:

1

42.8
ne [viB] + ne [ve B] ≈ ne [ve B] ≈ ne [v B].
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Take the operation rot from both sides of (26):

√
ρiρe

dΩ̄

dt
= −ne

γ
rot j + ne rot [v B]. (27)

Having executed transformations similar to the transition from (19) to (22), we have

rotj = −aγ dΩ̄
dt

+ γ rot [v B]. (28)

By performing further transformations, derive

∆B̄ = aµ0γ
dΩ̄

dt
− µ0γ rot [v B]. (29)

Thus, the complete magnetohydrodynamics model of a vortical process is described by the known equa-
tion (25) and equation (29) that we have derived. Equation (29) is distinguished from partial equation of
hydrodynamics (22) by the presence of a summand taking account of the back action of the magnetic field
on the process of its changing. As it can be readily shown, at low plasma conductivity γ the simple model
(22) is sufficient, while at high conductivity the general model (29) should be employed.

6 The reality of the model proposed

Considering in advance a magnetic field being formed to be weak, estimate the maximum magnitude of
induction using the hydrodynamic model (22). Calculate the magnetic induction magnitude of the originating
magnetic field in an axially symmetric flat stationary process of the type of vortex-flow (Fig. 1) or vortex-
spring (Fig. 2). For this process the components B,Ω in the plane x, y are identically equal to zero. Therefore,
equation (22) holds only for z components

∆Bz = aµ0γ
dΩz

dt
. (30)

Taking into account that By = Bz = 0, Ωx = Ωy = 0, representing the Laplacian of induction Bz

and the full derivative of vorticity Ωz in the cylindrical coordinate system (Kulikovsky, Lubimov 1962) and
omitting index z, come to the following expression

1

r

∂
(

r ∂B
∂r

)

∂r
= aµ0γ

(

∂Ω

∂t
+
∂Ω

∂r
vr

)

. (31)

Here r is the radius, vr is the radial component of the gas velocity. In consequence of stationarity ∂Ω/∂t = 0.
For an axially symmetric flow the z component of vorticity Ω is equal (Lojtsyansky 1987) to

Ω =
∂vt

∂r
+
vt

r
,

where vt is the tangential (peripheral) component of the gas velocity. In solid-body rotation the vorticity is
unchanged everywhere, Ω (r) = ∂vt/∂r = vt/r = const, while the tangential velocity is directly proportional
to the distance from the center. In vortex-free rotation the vorticity is equal to zero everywhere ∂vt/∂r =
−vt/r , Ω (r) = 0, while the tangential velocity of the gas is inversely proportional to the distance. These two
extreme causes correspond to a very high gas viscosity (then vr = 0) or no viscosity. They are not complied
with in the real stellar gas. To make estimates, we will assume that in some intermediate case the tangential
velocity is independent of the radius, vt (r) = const. Then

Ω =
vt

r
.

In accordance with the continuity condition (Lojtsyansky 1987) the power of the source, Q = 2πrvr (r) =
const, is unchanged (at vortex-flow Q < 0), and the radial velocity is, therefore, inversely proportional to the
radius. With allowance made for the presented relations, equality (30) changes to

∂ (r∂B/∂r)

∂r
= aµ0γ

Q

2π

(

∂ (vt/r)

∂r

)

. (32)
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Excluding left and right differentiation with respect to r, derive a relationship between the induction
derivative and the radius

∂B

∂r
= aµ0γ

Q

2π
vt

1

r2
. (33)

Considering the induction at an infinite distance to be zero, take the integral over (33) to a certain value
of the radius R

B (R) = aµ0γvt
Q

2π

R
∫

∞

dr

r2
= −aµ0γvt

Q

2πR
= −aµ0γvtvr(R). (34)

As it follows from (34), the magnetic field direction at vortex-flow (vr < 0) is defined by the right-hand-
screw (gimlet) rule, proceeding from the direction of the peripheral plasma velocity (Fig. 1). At vortex-spring
(vr > 0) the magnetic field direction is determined by the left-hand-screw rule (Fig. 2).

The induction is measured in Tesla

|B| = |a| |µ0| |γ| |v|2 =
kgH m2

C ms2 Ωm

kgΩ s

C s2 Ω
=
kg

A s2
=

N

Am
= T.

To evaluate the magnetic induction in the central region of the vortical process, specify the value of
the radius R0 at which the peripheral and radial velocities of the stellar gas become equal in magnitude
|vr(R0)| = |vt| = |Q|/(2πR0). Then

B (R0) = aµ0γv
2

t . (35)

The case vr > vt under real conditions seems to be unlikely. Most likely, when approaching this threshold,
the gas flow takes the axial direction, and, therefore the plane process model becomes inapplicable.

The temperature T=100000K, in the upper layer of the Sun is thought to be the basic parameter.
Assuming the Coulomb multiplier to be 10, obtain the value of the plasma conductivity (9)

γ = 1.53 · 10−3(105)3/2 = 4.84 · 104 Ω−1m−1 .

For estimating the plasma motion velocity in the vortical, Bernulli’s formula is used

p+ ρv2/2 = p0,

where p0 is the magnitude of the so-called total pressure on the streamline. The gas may be treated as
incompressible if the amount of dynamic pressure accounts for a small part of the total. It will be assumed
that at a maximum velocity this relation is of the same order as in powerful cyclonic processes on Earth

ρv2/2 = 0.1p0.

Since ρ ≈ min, p0 = 2nkT0, then v2 = 0.4kT0/mi. The plasma velocity

v =
√

0.4kT0/mi =

√

0.4 · 1.38 · 10−23 · 105

1.67 · 10−27
= 18 km/s

corresponds to the temperature specified above. Velocities of this and higher order at the surface of the Sun
are recorded in real observations (Priest 1985).

Since we adopted vr = vt, then

v2

t = v2/2 = 1.62 · 108m2/s2.

Substituting numerical values into (31), obtain

B = 2.436 · 10−10 · 4 · 3.14159 · 10−7 · 4.84 · 104 · 1.62 · 108 = 0.0015T = 15G.

The value of 15G is quite realistic and the magnetic induction of such an order of magnitude is recorded
at the surface of the Sun by direct observations.
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Note that the direction of the inductive current (its density is jm) is coincident with that of the tangential
component of the intensity of the electric field Emt due to the flow of plasma in a magnetic field. The radial
component Emr of the intensity Em caused by the plasma motion is compensated by the potential electric
field. The direction of the inductive current jm defined proceeding from inertial properties of the plasma
(Fig. 1, 2) Thus, the induction results in intensification of the initial current (but not in its compensation),
and thereby, in strengthening of the arising magnetic field. This permits a conclusion to be drawn that
the value of magnetic induction computed above is the lower threshold of the maximum under the selected
original conditions.

Specific calculation of inductive currents and forces of interaction between the magnetic field and the
currents in accordance with the full magnetohydrodynamic model (29) is the problem falling out of the scope
of the present paper.

Figure 1: Magnetic field at vortex flowing.

Figure 2: Magnetic field at vortex spring.
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7 Conclusions

It is shown that in vortex processes in the stellar plasma a magnetic field originates even though it was
primarily absent. When testing the verity of the suggested model, an estimate was made of the magnetic
induction in a characteristic vortex process in the upper layer of the Sun. The plasma temperature of 100000K
was taken as the initial parameter. The computed magnetic induction (15G) is close that actually observed
on the Sun.

The present paper contains the posing of the problem. A number of problems following from this posing
need to be discussed in more detail, in particular:

• acquisition and reduction of data of observations and measurements concerning vortex processes and
their associated magnetic fields in stars;

• detailed consideration of the role of turbulence in vortex processes;

• construction of a model for partially ionized plasma of complex composition (not entirely hydrogen);

• calculations of magnetic field with allowance for inductive currents at a given structure of vortex flows;

• development of a model and complete calculation of the structure, dynamics and magnetic field arising
in vortical processes caused by given thermodynamic conditions under zero and, consequently, non-zero
initial and peripheral conditions with taking account of the back action of the magnetic field on vortex
flows (the final and most complicated theoretical problem);

• comparison of observational and theoretical data.
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