УДК 523.44:520.82/85

НАБЛЮДЕНИЯ СБЛИЖАЮЩИХСЯ С ЗЕМЛЕЙ АСТЕРОИДОВ В ПОЛЯРИЗОВАННОМ СВЕТЕ

© 2018 В. Л. Афанасьев¹, А. В. Ипатов²

¹Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия¹ ²Институт прикладной астрономии РАН, Санкт-Петербург, 191187 Россия Поступила в редакцию 1 декабря 2017 года; принята в печать 22 марта 2018 года

Приведены результаты позиционных, фотометрических и поляризационных наблюдений на 6-м телескопе БТА САО РАН двух астероидов, сближающихся с Землей. Измерение вариаций блеска астероида 2009 DL46 8 марта 2016 г. (примерно 20 зв. вел. на расстоянии около 0.23 а.е. от Земли) в течение 1.2 часа показало вспышку с амплитудой 0^m2 длительностью около 20 минут. Степень поляризации в это же время возросла со среднего значения 2-3% до 14%. При этом угол плоскости поляризации составил $113^{\circ} \pm 1^{\circ}$ при фазовом угле 43° . Полученный результат указывает на то, что поверхность вращающего (период около 2.5 часов) астероида имеет, вероятно, неравномерную шероховатость. Наблюдения другого астероида — 1994 UG, яркость которого была около $17^{\rm m}$, а расстояние до Земли составляло 0.077 а.е., проводились в ночь 6/7 марта 2016 г. в двух режимах: фотометрическом и спектрополяриметрическом. Согласно результатам фотометрии в трех фильтрах *B*, *V*, *R* системы Джонсона, в течении часа блеск астероида в пределах ошибок измерений (около 0^m02) не менялся. Спектрополяриметрия в диапазоне 420–800 нм показала величину степени поляризации, спадающую от 8% в синей области спектра до 2% в красной, при величине фазового угла около 44°, что типично для астероидов, сближающихся с Землей и имеющих таксометрический класс S.

Ключевые слова: малые планеты, астероиды: индивидуальные: DL46, 1994 UG — методики: поляриметрические

1. ВВЕДЕНИЕ

Исследование динамических и физических характеристик астероидов, сближающихся с Землей, позволяет не только изучать их природу, но и оценивать степень опасности столкновения с Землей. Если радиолокационные наблюдения дают возможность получать изображения и изучать поступательно-вращательные движения этих небесных тел с точностью, недостижимой оптическими методами, то по наблюдениям в оптическом диапазоне возможно исследование их физических и минералогических характеристик.

Первоочередной задачей при оптических наблюдениях астероидов является измерение их альбедо, которое определяется как шероховатостью их поверхности, так и составом вещества астероида. Традиционные методы фотометрии и спектроскопии ориентированы на поиски отличий в спектре астероида от солнечного спектра, которые весьма малы (1–2%) [1]. Более перспективным представляется применение поляризационных методов,

позволяющих в видимом диапазоне определить физические характеристики астероидов. Поляриметрические наблюдения астероидов дают информацию о геометрическом альбедо астероидов и могут быть источником косвенных сведений о типичных размерах частиц поверхностного реголита. На роль поляриметрии как мощного инструмента (наряду со спектрофотометрией) обращено внимание в работах [2-5]. Однократного поляриметрического наблюдения астероида недостаточно для определения его свойств, потому что характер поляризации зависит от фазового угла. Для большинства наблюдаемых астероидов сделаны разовые измерения, и информация о поляризации астероидов в широком интервале фазовых углов имеется лишь для очень незначительной доли из общего числа астероидов [6].

Сближающиеся с Землей астероиды (СЗА) по известным причинам вызывают особый интерес. Их можно наблюдать при больших фазовых угла, где поляризация определяется рассеянием на отдельных частицах и величиной альбедо поверхности. Поляриметрические наблюдения при фазовых углах выше 90° были проведены до сих пор

¹E-mail: vafan@sao.ru

только для трех C3A: (1685) Торо [7], (4179) Тутатис [8] и (23187) 2000 PN₉ [9]. Эти астероиды относятся к таксономическому классу S и имеют довольно похожие поляризационные свойства: $P_{\text{max}} = 7.7 - 8.5\%$ и $\alpha_{\text{max}} = 103^{\circ} - 110^{\circ}$. Максимум поляризации наблюдался также у астероида Е-типа 33342 (1998 WT24) [10]. Имеющиеся данные, полученные до сих пор для СЗА, хотя все еще количественно ограничены, показывают, что даже по одиночным измерениям поляризации можно различить астероиды с низкими, умеренными и высокими альбедо. Крайне важным представляется исследование вариаций блеска и сравнение их с радиоданными. В конечном итоге целью исследования СЗА является как определение их динамических параметров, так и свойств поверхности.

В настоящей работе мы приводим результаты поляриметрических и фотометрических наблюдений на 6-м телескопе двух слабых астероидов, сближающихся с Землей.

2. НАБЛЮДЕНИЯ

Наблюдения проводились при помощи универсального спектрографа SCORPIO-2[11], установленного в первичном фокусе 6-метрового телескопа БТА САО РАН. Были использованы следующие режимы работы спектрографа:

- прямые изображения в трех фильтрах BVR системы Джонсона;
- поляриметрия в фильтре V с использованием дихроичного поляроида;
- спектрополяриметрия в области 0.4–0.9 мкм с низким спектральным разрешением (*R* ~ 500).

В качестве светоприемника нами использовалась ПЗС матрица EEV 42-90 формата 4096 × 2048 элементов. Масштаб изображения в плоскости приемника — 0".357 рх при размере пиксела 27 мкм (binning=2).

В начале 2016 г., когда планировались пробные наблюдения на БТА, нам были доступны два астероида — DL46 и 1994 UG. Наблюдения проводились в марте в ночи резерва директора. Далее мы приводим результаты наблюдений обоих астероидов.

2.1. Наблюдения астероида DL46

Согласно эфемериде, астероид DL46 был весьма слабым (около 20 зв. вел.) и находился на расстоянии 0.23 а.е. от Земли. Условия видимости (Луна) позволили наблюдать его только вечером 8 марта 2016 г. Из-за слабости объекта была проведена только поляриметрия в фильтре V с

Рис. 1. Суммарное изображение астероида в фильтре *V* (полное время экспозиции 3600 с).

вращающимся поляроидом по методу Фесенкова. В таблице 1 приведен журнал наблюдений, где указаны: имя FITS-файла изображения, всемирное время середины экспозиции, угол поворота поляроида, качество изображения в секундах дуги, зенитное расстояние, измеренные экваториальные координаты астероида на момент середины экспозиции и ошибки их измерения. Длительность экспозиции для всех изображений была одинаковой и составляла 100 с. Гидирование осуществлялось по методу Меткоффа при помощи лунно-планетного привода АСУ БТА. На рис. 1 показан суммарный снимок, иллюстрирующий качество гидирования астероида. Для фотометрической калибровки нами была получена серия снимков рассеянного скопления NGC 2420. Данные обрабатывались стандартными процедурами DAOPHOT.

2.1.1. Позиционные измерения

Для каждого изображения нами проводилась астрометрия с использованием каталога USNO-2.0 в формате Guide Star Catalog [12] и в заголовок каждого FITS-файла записывалась стандартная нелинейная астрометрическая структура. Средняя точность астрометрической привязки одиночного кадра — около 0."3. Результаты позиционных измерений астероида DL46 приведены в столбцах (7) и (8) таблицы 1 и там же (столбцы (9) и (10)) указаны ошибки астрометрической привязки.

2.1.2. Поляриметрия

Методика редукции поляриметрических данных при наблюдениях с поляроидом достаточно подробно описана в нашей работе [13]. Наиболее

File	UT	Angle,	Seeing,	z,	RA(2000),	Dec(2000),	Err RA,	Err Dec,
	hh mm ss.ss	deg	arcsec	deg	hh mm ss.ss	dd mm ss.ss	arcsec	arcsec
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
s13880203	163621.75	-60	1.0	39	10 30 39.953	$+56\ 40\ 34.19$	0.21	0.10
s13880204	16 38 18.06	0	1.0	39	10 30 39.780	$+56\ 40\ 36.41$	0.18	0.37
s13880205	16 40 13.37	+60	0.8	38	10 30 39.699	$+56\ 40\ 38.11$	0.13	0.23
s13880206	16 43 12.94	-60	0.8	38	10 30 39.453	$+56\ 40\ 41.84$	0.16	0.36
s13880207	$16\ 45\ 09.25$	0	0.8	38	10 30 39.341	$+56\ 40\ 42.95$	0.14	0.27
s13880208	$16\ 47\ 03.56$	+60	0.8	38	10 30 39.220	$+56\ 40\ 45.56$	0.17	0.46
s13880209	$16\ 49\ 06.88$	-60	0.8	37	10 30 39.084	$+56\ 40\ 47.80$	0.19	0.28
s13880210	16 51 03.29	0	0.8	37	10 30 38.960	$+56\ 40\ 49.42$	0.22	0.26
s13880211	$16\ 52\ 59.59$	+60	0.8	37	10 30 38.796	$+56\ 40\ 51.05$	0.16	0.15
s13880212	165501.00	-60	0.8	36	$10\ 30\ 38.737$	$+56\ 40\ 53.01$	0.29	0.24
s13880213	$16\ 56\ 55.30$	0	0.8	36	$10\ 30\ 38.584$	$+56\ 40\ 55.11$	0.25	0.26
s13880214	165851.40	+60	0.8	36	$10\ 30\ 38.522$	$+56\ 40\ 56.90$	0.22	0.18
s13880215	$17\ 04\ 50.92$	-60	0.8	35	10 30 38.103	$+56\ 41\ 03.58$	0.22	0.21
s13880216	17 06 47.13	0	0.8	35	10 30 38.033	+56 41 04.81	0.28	0.35
s13880217	17 08 41.43	+60	0.8	35	10 30 37.845	$+56\ 41\ 07.17$	0.18	0.39
s13880218	17 10 44.84	-60	0.8	34	10 30 37.683	$+56\ 41\ 08.60$	0.24	0.21
s13880219	17 12 40.14	0	0.8	34	10 30 37.546	+56 41 11.30	0.26	0.40
s13880220	17 14 36.54	+60	0.8	34	10 30 37.445	$+56\ 41\ 12.94$	0.22	0.32
s13880221	17 16 39.96	-60	0.8	33	10 30 37.384	+56 41 15.07	0.16	0.24
s13880222	17 18 34.26	0	0.8	33	10 30 37.191	+56 41 17.53	0.29	0.38
s13880223	17 20 29.57	+60	0.8	33	10 30 37.129	+56 41 18.74	0.27	0.23
s13880224	17 22 31.88	-60	0.8	33	10 30 36.961	+56 41 21.27	0.18	0.19
s13880225	17 24 29.18	0	0.8	32	10 30 36.829	+56 41 23.21	0.25	0.22
s13880226	17 26 23.59	+60	0.8	32	10 30 36.699	+56 41 25.28	0.27	0.21
s13880227	17 29 34.16	-60	0.8	32	10 30 36.456	+56 41 28.87	0.24	0.24
s13880228	17 31 28.36	0	0.8	31	10 30 36.372	+56 41 30.33	0.20	0.26
s13880229	17 33 22.56	+60	0.8	31	10 30 36.264	+56 41 32.67	0.20	0.24
s13880230	17 35 24.77	-60	0.8	31	10 30 36.126	+56 41 34.30	0.22	0.29
s13880231	17 37 43.09	0	0.8	31	10 30 35.979	+56 41 36.82	0.25	0.27
s13880232	17 39 38.50	+60	0.8	30	10 30 35.823	+56 41 38.39	0.20	0.27
s13880233	17 41 39.91	-60	0.8	30	10 30 35.684	+56 41 41.15	0.25	0.29
s13880234	17 43 36.22	0	1.1	30	10 30 35.568	+56 41 42.65	0.28	0.29
s13880235	17 45 31.53	+60	1.1	29	10 30 35.495	+56 41 45.06	0.21	0.18
s13880236	17 47 32.85	-60	1.1	29	10 30 35.305	+56 41 46.59	0.23	0.29
s13880237	17 49 29.16	0	1.1	29	10 30 35.144	+56 41 49.03	0.29	0.19
s13880238	17 51 24.37	+60	1.1	29	10 30 35.052	+56 41 50.87	0.21	0.23

Таблица 1. Поляриметрические наблюдения астероида DL46 8 марта 2016 г.

Рис. 2. Вариации потока опорной звезды (а) и астероида DL46 (b) в различных поляризационных каналах.

критичным при измерении поляризации по методу Фесенкова является стабильность атмосферы. На рис. 2а показаны вариации яркости опорной звезды с нулевой поляризацией в поле DL46 для трех углов поворота поляроида и соответствующие вариации потока для исследуемого объекта (рис. 2b). Можно сделать вывод, что вариации потока от DL46 в различных поляризационных каналах за время наблюдений (1 час) достигают 40–50%, что заметно превышает как атмосферные вариации (1.5%), так и случайные ошибки измерений (4%), которые определяются статистикой фотоотсчетов.

Имея из наблюдений измеренные интенсивности в трех углах поляроида — $I(x, y)_0$, $I(x, y)_{-60}$ и $I(x, y)_{+60}$, мы можем вычислить с точностью до преобразования поворота параметры Стокса Q и U в каждой точке изображения с координатами (x, y). Используем следующие соотношения:

$$Q(x, y) = \frac{2I(x, y)_0 - I(x, y)_{-60} - I(x, y)_{+60}}{I(x, y)_0 + I(x, y)_{-60} + I(x, y)_{+60}}$$

$$U(x, y) = \frac{1}{\sqrt{3}} \frac{I(x, y)_{+60} - I(x, y)_{-60}}{I(x, y)_0 + I(x, y)_{-60} + I(x, y)_{+60}}.$$
(1)

Отсюда по известной формуле

$$P = \sqrt{Q^2 + U^2}, \quad PA = PA_{\text{slit}} - \frac{1}{2}\arctan\frac{U}{Q} + PA_0$$
(2)

вычисляем значение степени линейной поляризации Р и позиционного угла плоскости поляризации PA. Здесь $PA_{\rm slit}$ и PA_0 — постоянные прибора. На рис. 3 показано наблюдаемое изменение со временем параметров линейной поляризации астероида DL46: интегральной яркости (параметр Стокса *I*) в звездных величинах, нормированные параметры Стокса Q и U, степень линейной поляризации *Р* и позиционный угол плоскости поляризации *PA*. На рисунке видно, что блеск астероида изменялся мало, лишь в последних трех точках нашей серии в течении 20 минут наблюдалось значимое увеличение яркости на 0.2 зв. вел., что почти на порядок превышает вариации прозрачности атмосферы (см. рис. 2). Однако более удивительным является то, что в это же время степень линейной поляризации возросла со среднего значения 2-3%. Угол плоскости поляризации при этом оставался неизменным и с точностью до ошибок совпадал с фазовым углом астероида, согласно эфемериде (порядка 42°). Вероятно, резкое увеличение поляризации связано с неоднородностью поверхности астероида, например, наличием более гладких участков на поверхности типа базальтовых плит.

Рис. 3. Изменение параметров поляризации астероида DL46.

Рис. 4. Вариации блеска астероида 1994 UG в различных фильтрах.

2.2. Наблюдения астероида 1994 UG

Согласно эфемериде, в ночь наблюдений 6 марта 2016 г. астероид 1994 UG был достаточно ярким (примерно 17 зв. вел.) и находился на расстоянии 0.077 а.е. от Земли. Наряду с измерением его блеска и положения в различных фильтрах мы смогли изучить его спектр в поляризованном свете. Результаты позиционных и фотометрических наблюдений астероида 1994 UG приведены в таблице 2, где указаны: номер файла, всемирное время середины экспозиции, экспозиция, фильтр,

Рис. 5. Спектры астероида 1994 UG без вычитания фона неба, полученные с двойным анализатором Волластона с экспозицией 180 с 6 марта 2016 г. (UT 23:39). Значения углов выделяемой плоскости поляризации на спектрах — 0° (а), 90° (b), 45° (с) и 135° (d).

зенитное расстояние, качество изображений, измеренные координаты объекта, ошибка астрометрической привязки и звездная величина.

2.2.1. Астрометрия и фотометрия

Астрометрическая привязка делалась таким же образом, как и для астероида DL46.

Фотометрические измерения проводились в трех цветовых полосах системы Джонсона: В, V и $R~(\lambda_{\rm eff} \sim 435$ нм, 555 нм и 700 нм соответственно). Прозрачность атмосферы была достаточно хорошей. Длительность экспозиции в каждом фильтре выбиралась из соображений равноточных измерений во всех фильтрах. Всего было получено десять серий по три последовательные экспозиции в каждом фильтре. Одной из трудностей при проведении фотометрии было то, что более чем в половине полученных кадров на изображения астероида накладывались изображения слабых звезд, что затрудняло измерение фона неба для последующего вычитания и вносило систематические ошибки в фотометрические оценки. В некоторых случаях ошибка достигала 0.2-0.3 зв. вел. Для корректного разделения изображений использовались методы апертурной фотометрии, которые уменьшили систематические ошибки до нескольких сотых звездной величины. Измерения звездных величин в трех фильтрах для каждого момента наблюдений приведены в таблице 2. Изменения яркости астероида со временем показаны на рис. 4.

На рисунке видно, что значимые изменения блеска и показатели цвета, превышающие вариации прозрачности атмосферы во время наблюдений (3%, или 0.03 зв. вел.), нами не обнаружены.

Рис. 6. Параметры поляризации в спектре астероида 1994 UG.

2.2.2. Спектрополяриметрия

Спектрополяриметрия астероида 1994 UG проводилась на БТА на спектрографе SCORPIO-2 с двойным анализатором Волластона, позволяющим получать одновременно четыре спектра в разных плоскостях колебаний электрического вектора исследуемого электромагнитного излучения в видимой области спектра — 0°, 90°, 45° и 135°. Высота щели спектрографа при этом была 1', что позволило уверенно вычитать фон ночного неба. Всего было получено пять спектров с экспозициями 180 с с объемной фазовой голографической решеткой 940 штр./мм в диапазоне 420—850 нм. Ширина щели была равна 2", а качество изображения — 1"5. Спектральное разрешение при этих условиях составило $R \sim 450$. Пример спектра, полученного в спектрополяриметрическом режиме, показан на рис. 5.

Параметры Стокса для линейно поляризованного излучения в этом случае можно найти из соотношений:

$$I(\lambda) = I_0(\lambda) + I_{90}(\lambda) K_Q(\lambda) + I_{45}(\lambda) + I_{135}(\lambda) K_U(\lambda),$$
(3)

$$Q(\lambda) = \frac{I_0(\lambda) - I_{90}(\lambda)K_Q(\lambda)}{I_0(\lambda) + I_{90}(\lambda)K_Q(\lambda)},$$
(4)

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 73 № 2 2018

		1	1					1	· · · · · · · · · · · · · · · · · · ·
File	UT,	$T_{\mathrm{exp}},$	Filter	z,	Seeing,	RA(2000),	Dec(2000),	Error,	Magnitude
	hh mm ss.ss	S	i inter	deg	arcsec	hh mm ss.ss	dd mm ss.ss	arcsec	magintade
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
s13860101	21:58:31.04	120	B	22	2.0	09 37 44.841	$+48\ 43\ 06.97$	0.17	17.21 ± 0.02
s13860102	22:00:42.07	60	V	22	2.0	09 37 44.117	+48 43 10.31	0.18	16.83 ± 0.02
s13860103	22:02:19.65	30	R	22	2.0	09 37 43.581	+48 43 13.75	0.22	16.59 ± 0.02
s13860104	22:04:08.01	120	B	22	2.0	$09\ 37\ 42.929$	+48 43 17.71	0.25	17.21 ± 0.02
s13860105	22:06:33.26	60	V	23	2.0	$09\ 37\ 42.066$	$+48\ 43\ 21.68$	0.26	16.84 ± 0.02
s13860106	22:07:44.00	30	R	23	2.0	09 37 41.687	$+48\ 43\ 24.16$	0.14	16.59 ± 0.02
s13860107	22:10:59.79	120	B	23	2.0	09 37 40.880	$+48\ 43\ 28.42$	0.27	17.20 ± 0.02
s13860108	22:12:30.51	60	V	24	2.0	09 37 39.996	$+48\ 43\ 33.77$	0.19	16.83 ± 0.02
s13860109	22:13:34.01	30	R	24	2.0	09 37 39.644	+48 43 35.80	0.14	16.58 ± 0.02
s13860110	22:15:22.21	120	B	24	2.0	09 37 38.964	$+48\ 43\ 39.70$	0.25	17.18 ± 0.02
s13860111	22:18:10.04	60	V	25	2.0	09 37 38.058	$+48\ 43\ 44.66$	0.14	16.82 ± 0.02
s13860112	22:20:53.01	30	R	25	2.0	09 37 37.076	+48 43 50.01	0.12	16.62 ± 0.02
s13860113	22:21:04.96	120	B	26	2.0	09 37 36.322	+48 43 54.41	0.20	17.19 ± 0.02
s13860114	22:26:07.70	60	V	26	2.0	09 37 35.270	$+48\ 44\ 00.58$	0.15	16.83 ± 0.02
s13860115	22:28:39.51	30	R	27	2.0	09 37 34.384	+48 44 05.37	0.13	16.61 ± 0.02
s13860116	22:31:14.09	120	B	27	2.0	09 37 33.519	+48 44 10.82	0.23	17.21 ± 0.02
s13860117	22:32:57.34	60	V	27	2.0	09 37 32.905	+48 44 13.98	0.21	16.84 ± 0.02
s13860118	22:34:59.67	30	R	28	2.0	09 37 32.176	$+48\ 44\ 17.92$	0.10	16.58 ± 0.02
s13860119	22:36:57.95	120	B	28	2.0	09 37 31.441	+48 44 22.23	0.26	17.19 ± 0.02
s13860120	22:39:11.78	60	V	28	2.0	09 37 30.661	$+48\ 44\ 26.27$	0.17	16.82 ± 0.02
s13860121	22:40:37.14	30	R	29	2.0	09 37 30.234	$+48\ 44\ 28.86$	0.19	16.62 ± 0.02
s13860122	22:43:43.62	120	В	29	2.0	09 37 29.177	+48 44 35.07	0.19	17.22 ± 0.02
s13860123	22:46:02.01	60	V	30	2.0	09 37 28.358	+48 44 39.43	0.18	16.83 ± 0.02
s13860124	22:47.13.87	30	R	30	2.0	09 37 27.929	+48 44 41.81	0.11	16.61 ± 0.02
s13860125	22:49:54.56	120	В	30	2.0	09 37 26.964	$+48\ 44\ 47.28$	0.20	17.23 ± 0.02
s13860126	22:52:03.73	60	V	30	2.0	09 37 26.209	$+48\ 44\ 50.86$	0.17	16.87 ± 0.02
s13860127	22:53:15.62	30	R	31	2.0	09 37 25.857	+48 44 53.11	0.14	16.60 ± 0.02
s13860128	22:54:51.87	120	В	31	2.0	09 37 25.330	+48 44 56.44	0.11	17.22 ± 0.02
s13860129	22:56:46.85	60	V	31	2.5	09 37 24.647	$+48\ 45\ 00.29$	0.23	16.84 ± 0.02
s13860130	22:58:59.68	30	R	32	2.5	09 37 23.877	$+48\ 45\ 04.88$	0.14	16.62 ± 0.02

Таблица 2. Результаты позиционных и фотометрических измерений астероида 1994 UG 7 марта 2016 г.

$$U(\lambda) = \frac{I_{45}(\lambda) - I_{135}(\lambda)K_U(\lambda)}{I_{45}(\lambda) + I_{135}(\lambda)K_U(\lambda)},$$
(5)

где K_Q и K_U — инструментальные параметры, зависящие от пропускания поляризационных каналов, которые определяются из наблюдений звезд с нулевой поляризацией. Здесь $I_0(\lambda)$, $I_{90}(\lambda)$, $I_{45}(\lambda)$ и $I_{135}(\lambda)$ — измеренные интенсивности в спектрах, соответствующих разным направлениям поляризации. Степень поляризации P и угол плоскости поляризации PA вычисляются из Соотношения (2).

Зависимости параметров поляризации астерои-

17 АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 73 № 2 2018

да 1994 UG от длины волны показаны на рис. 6, на котором приводятся (сверху вниз): исправленный за спектральную чувствительность поток $F(\lambda)$ в спектре объекта в диапазоне 420–800 нм, нормированные параметры Стокса $Q(\lambda)$ и $U(\lambda)$, степень поляризации $P(\lambda)$ и позиционный угол плоскости поляризации $P(\lambda)$. Рядом со спектром объекта в произвольных единицах показан спектр Солнца согласно международному стандарту ISO 9845-1:1992¹. В спектре астероида хорошо видны фраунгоферовы линии поглощения, а непрерывный спектр показывает заметное покраснение по сравнению с солнечным континуумом. Широкие абсорбционные детали на длинах волн 690 нм и 760 нм — молекулярные полосы поглощения в атмосфере Земли. Распределение энергии в спектре астероида указывает на то, что он относится к S-классу [14]. На рисунке видно, что степень поляризации падает с увеличением длины волны. Результат интегрирования поляризованного спектра в полосах фотометрической системы Джонсона дает следующие оценки степени поляризации в различных цветах: $P_B = (6.2 \pm 0.6)\%$, $P_V = (3.5 \pm 0.5)\%$ и $P_R = (2.5 \pm 0.3)\%$. Отметим, что угол плоскости поляризации с точностью до ошибок не изменяется в нашем спектральном диапазоне, как и должно быть при наблюдениях астероида. Фазовый угол астероида на момент наблюдений составил 46°5. Такие параметры астероида 1994 UG близки к поляриметрическим измерениям в широких полосах для сближающегося с Землей астероида (1685) Тоpo [7].

Первые данные по спектрополяриметрии ярких астероидов были получены в работе [15], а спектрополяриметрия слабых СЗА сделана нами впервые. Сравнение нормированных зависимостей степени поляризации от длины волны с данными, полученными для астероида S-типа Эрос при фазовом угле 42° (см. рис. 3 в работе [15]) показывает поразительное сходство с нашими данными. При этом следует отметить, что в нашем случае поляризация в V-полосе больше поляризации Эроса приблизительно в два раза. Это обстоятельство может указывать на то, что по характеру изменения альбедо с длиной волны и степени поляризации поверхность астероида 1994 UG близка по свойствам к поверхности морей Луны [16] на больших фазовых углах.

3. ЗАКЛЮЧЕНИЕ

Впервые проведены спектрополяриметрические наблюдения слабых астероидов, сближающихся с Землей. Для астероида 1994 UG показано, что он относится к таксометрическому классу S и характеристики его поверхности близки по поляризационным свойства к поверхности морей Луны. У слабого астероида 2009 DL46 зарегистрировано

сильное увеличение поляризации со временем (с http://www.pveducation.org/pvcdrom/appendices/standardsolar-spectra

3% до 14%), что свидетельствует о неоднородности поверхности.

БЛАГОДАРНОСТИ

Авторы благодарны Н. Н. Киселеву за ценные критические замечания и администрации САО РАН за выделение времени для наблюдений астероидов. Работа поддержана грантом РНФ, проект 16-12-00071.

СПИСОК ЛИТЕРАТУРЫ

- 1. D. Morate, J. de León, M. De Prá, et al., Astron. and Astrophys. **586**, A129 (2016).
- C. R. Chapman, D. Morrison, and B. Zellner, Icarus 25, 104 (1975).
- 3. M. I. Mishchenko, V. K. Rosenbush, N. N. Kiselev, et al., arXiv:1010.1171 (2010).
- R. P. Binzel, D. Lupishko, M. di Martino, et al., *Physical Properties of Near-Earth Objects* (Univ. Arizona Press, Tucson, 2002), pp. 255–271.
- 5. S. J. Bus, F. Vilas, and M. A. Barucci, *Visible-Wavelength Spectroscopy of Asteroids* (Univ. Arizona Press, Tucson, 2002), pp. 169–182.
- 6. D. F. Lupishko and S. V. Vasilyev, NASA Planetary Data System **184**, EAR-A-3-RDR-APD-POLARIMETRY-V7.0 (2012).
- N. N. Kiselev, D. F. Lupishko, G. P. Chernova, and I. G. Shkuratov, Kinematics and Physics of Celestial Bodies 6, 77 (1990).
- 8. M. Ishiguro, H. Nakayama, M. Kogachi, et al., Publ. Astron. Soc. Japan **49**, L31 (1997).
- I. N. Belskaya, S. Fornasier, and Y. N. Krugly, Icarus 201, 167 (2009).
- N. N. Kiselev, V. K. Rosenbush, K. Jockers, et al., in *Proc. Intern. Conf. on Asteroids, Comets, and Meteors — ACM 2002, Berlin, Germany, 2002*, Ed. by B. Warmbein, ESA SP 500 (ESA Publ. Division, Noordwijk, 2002), pp. 887–890.
- 11. V. L. Afanasiev and A. V. Moiseev, Baltic Astronomy **20**, 363 (2011).
- J. L. Russell, B. M. Lasker, B. J. McLean, et al., Astron. J. 99, 2059 (1990).
- 13. V. L. Afanasiev and V. R. Amirkhanyan, Astrophysical Bulletin **67**, 438 (2012).
- 14. E. S. Howell, E. Merenyi, and L. A. Lebofsky, J. Geophys. Research **99**, 10 (1994).
- 15. S. Bagnulo, A. Cellino, and M. F. Sterzik, Monthly Notices Royal Astron. Soc. **446**, L11 (2015).
- 16. N. V. Opanasenko and Y. G. Shkuratov, Astronomicheskii Vestnik 28, 133 (1994).

Observations of Near-Earth Asteroids in Polarized Light

V. L. Afanasiev and A. V. Ipatov

We report the results of position, photometric, and polarimetric observations of two near-Earth asteroids made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. 1.2-hour measurements of the photometric variations of the asteroid 2009 DL46 made on March 8, 2016 (~ 20^m at a distance of about 0.23 AU from the Earth) showed a 0^m₂-amplitude flash with a duration of about 20 minutes. During this time the polarization degree increased from the average level of 2–3% to 14%. The angle of the polarization plane and the phase angle were equal to 113° ± 1° and 43°, respectively. Our result indicates that the surface of the rotating asteroid (the rotation period of about 2.5 hours) must be non-uniformly rough. Observations of another asteroid—1994 UG—whose brightness was of about 17^m and which was located at a geocentric distance of 0.077 AU, were carried out during the night of March 6/7, 2016 in two modes: photometric and spectropolarimetric. According to the results of photometric observations in Johnson's *B*-, *V*-, and *R*-band filters, over one hour the brightness of the asteroid remained unchanged within the measurement errors (about 0^m02). Spectropolarimetric observations in the 420–800 nm wavelength interval showed the polarization degree to decrease from 8% in the blue part of the spectrum to 2% in the red part with the phase angle equal to 44°, which is typical for S-type near-Earth asteroids.

Keywords: *small Solar System body—asteroids: photometry and polarimetry*