УДК 524.314-76

ОБНАРУЖЕНИЕ СПЕКТРАЛЬНОЙ ДВОЙСТВЕННОСТИ (SB2) 3BE3ДЫ BD -6° 1178 = IRAS 05238-0626

© 2008 В. Г. Клочкова^{1*}, Е. Л. Ченцов¹

¹Специальная астрофизическая обсерватория, Нижний Архыз, 369167 Россия Поступила в редакцию 27 марта 2008 г.; принята в печать 22 апреля 2008 г.

По спектрам высокого спектрального разрешения, полученным с эшелле спектрографом НЭС 6-метрового телескопа БТА, впервые обнаружена спектральная двойственность (SB2) звезды $BD-6^{\circ}1178$, отождествляемой с ИК-источником IRAS 05238-0626. Компоненты имеют близкие спектральные классы и классы светимости $F5\,IV-III$ и $F3\,V$. Для 4-х моментов наблюдений в $2004-2005\,r.r.$ измерена гелиоцентрическая лучевая скорость обоих компонентов. Скорости вращения обеих звезд близки и составляют 24 и $19\,km/c$. Не подтверждена классификация $BD-6^{\circ}1178$ как сверхгиганта на стадии перехода к планетарной туманности. $BD-6^{\circ}1178$, вероятно, является молодой звездой до $\Gamma\Pi$. Не исключено ее членство в подгруппе 1с ассоциации Ori OB1.

Key words: звезды — свойства и классификация

1. ВВЕДЕНИЕ

В данной статье мы продолжаем публиковать результаты спектроскопии звезд с ИК-избытками (основные результаты см. в работах [1-5] и в ссылках, приведенных в них). Звезда BD-6°1178 является оптическим компонентом ИК-источника IRAS 05238-0626 (галактические координаты $l = 208.9^{\circ}$, b= -21.8°). На основании наблюдаемого избытка излучения в области 12-60 мкм и с учетом положения на диаграмме ИК-цветов, этот объект считается кандидатом в протопланетарные туманности (PPN) [6-8]. Напомним, что, согласно современным представлениям (см., например, [9]), на кратковременной эволюционной стадии молодой планетарной (протопланетарной) туманности наблюдаются звезды промежуточных масс, которые эволюционируют от стадии асимптотической ветви гигантов (AGB) к стадии планетарной туманности. Исходная масса этих звезд на Главной Последовательности (ГП) находится в интервале 3-8 \mathcal{M}_{\odot} . На стадии AGB эти звезды испытали большую потерю вещества в виде мощного звездного ветра, вследствие чего звезда на стадии PPN представляет собой вырожденное углероднокислородное ядро с типичной массой около $0.6\mathcal{M}_{\odot}$, окруженное расширяющейся газопылевой оболочкой. Интерес астрономов к РРN обусловлен, вопервых, возможностью изучать потерю вещества за счет звездного ветра, а во-вторых, уникальной возможностью наблюдать результат звездного

*E-mail: valenta@sao.ru

нуклеосинтеза, процессов перемешивания и выноса в поверхностные слои продуктов ядерных реакций в ходе предшествующей эволюции звезды.

Действительно, среди изученных кандидатов в PPN были выявлены около дюжины объектов с избытками тяжелых металлов, синтез которых идет за счет нейтронизации ядер железа в условиях низкой плотности нейтронов (так называемый s-процесс). Из анализа свойств PPN выяснилось, что ожидаемые избытки элементов s-процесса наблюдаются только в атмосферах обогащенных углеродом (C-rich) звезд, в ИК-спектрах которых имеется эмиссия на длине волны 21 мкм [1, 5, 10, 11]. Подавляющее же число PPN не имеют ни избытка углерода (O-rich звезды), ни избытка тяжелых металлов (см., например, [1, 12, 13]). Обнаруженная корреляция между избытком тяжелых металлов в атмосфере звезды и особенностью ИКспектра оболочки этой звезды требует объяснения, а, следовательно, и расширения выборки изученных РРМ.

К настоящему времени о звезде $BD-6^{\circ}1178$ известно немного. Видимые координаты на эпоху 2000 года: $\alpha=05^{\rm h}26^{\rm m}19.8^{\rm s},~\delta=-6^{\circ}23^{'}57^{''}$. Видимые звездные величины в фильтрах $V=10.52^{\rm m}$ и $B=10.96^{\rm m}$ [8]. Найдены признаки фотометрической переменности: по каталогу NSVS [14] средняя звездная величина в системе, близкой к фильтру R, меняется в интервале $10.78-10.87^{\rm m}$ при средней ошибке порядка $0.01^{\rm m}$. Моделирование распределения энергии в видимой и ближней MK областях спектра, полученного из многоцветной фотометрии,

291 19*

дает величину эффективной температуры T_{eff} от $8000 \, \text{K}$ [6] до $7400 \, \text{K}$ [8], что соответствует поздним подклассам A — ранним подклассам F.

Что касается спектроскопии $BD-6^{\circ}1178$, то пока опубликованы лишь спектры низкого разрешения, примерно 5 А/пиксель. По ним получены следующие оценки спектрального класса: F2 II [7], F4 [15], F5 [16]. С учетом вышесказанного, становится очевидной необходимость детального изучения оптического спектра звезды. В данной статье мы представляем результаты многократных спектральных наблюдений BD-6°1178 с высоким спектральным разрешением, выполненных на 6-м телескопе БТА. Цель нашего исследования — двумерная количественная спектральная классификация, поиск вероятной спектральной переменности, изучение поля скоростей в атмосфере и оболочке звезды, а также уточнение ее эволюционного статуса. В разделе 2 кратко описаны методы наблюдений и редукции, в разделе 3 мы приводим и анализируем полученные наблюдательные данные и в разделе 4 кратко суммируем основные результаты.

2. НАБЛЮДЕНИЯ И АНАЛИЗ СПЕКТРОВ

Спектральные данные для BD-6°1178 получены в фокусе Нэсмита 6-метрового телескопе БТА Специальной Астрофизической Обсерватории РАН с эшельным спектрографом НЭС [17]. Наблюдения выполнены с использованием крупноформатной ПЗС-матрицы 2048 × 2048 элементов и с резателем изображений [17]. Спектральное разрешение составляет 60000. Экстракция данных из двумерных эшелле-спектров выполнена с помощью модифицированного [18] контекста ECHELLE комплекса программ MIDAS. Удаление следов космических частиц проводилось медианным усреднением двух спектров, полученных последовательно один за другим. Калибровка по длинам волн осуществлялась с использованием спектров Th-Ar лампы с полым катодом. Полученные по этим спектрам и приводимые ниже в Табл. 1 лучевые и ротационные скорости найдены путем совмещения прямых и зеркальных изображений профилей линий. Контроль и коррекция инструментального рассогласования спектров звезды и лампы с полым катодом выполнены по теллурическим линиям O_2 и H_2O , остаточные систематические ошибки не превышают ошибок измерения (около 1 км/с по одной линии).

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1. Спектральная двойственность

Основной результат нашей работы заключается в том, что мы впервые выявили двойственность

 $BD-6^{\circ}1178$. Это двухспектровая спектральнодвойная с довольно узкими хорошо разделяемыми линиями. Қак видно из Табл. 1, максимальный зафиксированный нами взаимный сдвиг спектров компонентов около 120 км/с, что по крайней мере в 5 раз превышает ширину линий. Глубины абсорбций в спектрах компаньонов, а, следовательно, и их спектральные классы и светимости, близки друг к другу. Первым назван компаньон, в спектре которого абсорбции несколько глубже и шире (центральные глубины больше в среднем на 8%, ширины – на 25%, эквивалентные ширины на 35%). На Рис. 1 показаны спектры вблизи линии D2 NaI для разных дат наблюдений. Гелиоцентрические лучевые скорости для межзвездных компонентов: Vr = 4 и 20 км/с.

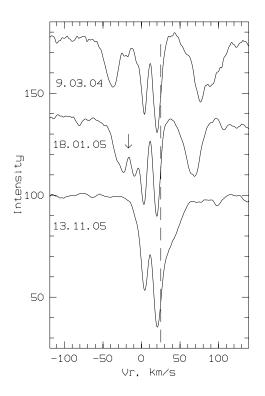


Рис. 1. Сопоставление спектров ${\rm BD-6^{\circ}1178}$ вблизи линии ${\rm D2\,NaI}$. Стрелкой на спектре 18.01.05 помечена теллурическая эмиссия. Вертикальной штриховой линией указана принятая величина системной скорости ${\rm V}_{sys}$ ≈25 км/с.

Дифференциальные сдвиги заметны только у линий $H\beta$ и $H\alpha$. У $H\beta$ сдвиги невелики и могут быть следствием блендирования широких компонентов, в спектре от 24.09.05 скорости для компонентов абсорбции $H\beta$ составили 87 и -20 км/с, а от 13.11.05 скорость для ядра нерасщепленной абсорбции составила 26 км/с. В случае $H\alpha$ рас-

Дата	JD	$\Delta\lambda, \mathring{\mathrm{A}}$	$Vr(V\sin i)$, km/c
9.03.04	074.2	5300-6770	85 (24) -36 (18)
18.01.05	389.2	5300-6770	-20(24) 66(19)
24.09.05	637.5	4190-5520	84(24) - 34(20)
13.11.05	688.4	4560-6010	21 (25:) 33: (-)

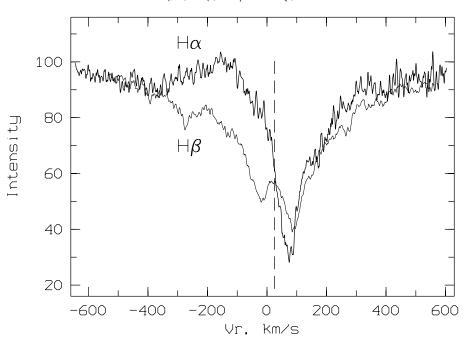
Таблица 1. Журнал наблюдений BD -6° 1178, средние гелиоцентрические лучевые скорости Vr для обоих компонентов; в скобках указаны скорости вращения $V \sin i$.

щепление исчезает, возможно, из-за более сложной формы профилей компонентов. В зарегистрированной нами области спектра это единственная линия, в которой можно предполагать присутствие эмиссии. Иначе трудно объяснить резкое различие формы профилей $H\alpha$ и $H\beta$ (см. Рис. 2), которые в спектрах обычных F-звезд мало отличаются другот друга (что демонстрируют, например, спектральные атласы высокого разрешения [19, 20].

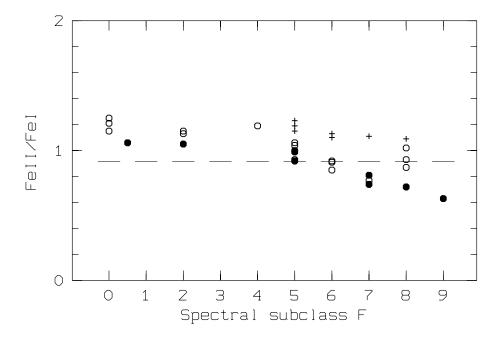
У нас нет спектров, содержащих обе эти линии, но мы можем сопоставить их профили в близких фазах: ${\rm H}\alpha$ 9.03.04 и ${\rm H}\beta$ 24.09.05. На Рис. 2 они наложены друг на друга, вертикальной прямой отмечена предполагаемая γ -скорость системы (${\rm V}_{sys}{\approx}25~{\rm km/c}$). В профиле ${\rm H}\beta$ от 24.09.05 хорошо видны оба компонента, их вклады в общий профиль различаются больше, чем у остальных линий, 1-й (${\rm Vr}$ = 87 км/с) глубже 2-го (${\rm Vr}$ = -20 км/с) на 22%. Профиль ${\rm H}\alpha$ от 9.03.04 асимметричен, поглощение в его красной половине значительно сильнее, чем в синей. Ясно виден только 1-й компонент (скорость по нему 75 км/с), он глубже, чем у ${\rm H}\beta$; 2-й компонент, возможно, содержит эмиссию, поднимающуюся до уровня континуума на ${\rm Vr}{\approx}$ -130 км/с.

3.2. Спектральная классификация

Двумерная спектральная классификация Гзвезд довольно сложна. Наш материал позволяет
выполнить ее, сопоставляя интенсивности линий
нейтральных металлов и их ионов. Калибровочные кривые для пар линий (FeII 4731/FeI 4737,
FeII 4924/FeI 4921 и др.) строились по спектрам высокого разрешения из атласа Клочковой и др. [20] и из библиотеки ELODIE.3 [21].
Для примера на Рис. 3 приведена зависимость
отношения центральных глубин абсорбций от
спектрального класса и класса светимости для
пары линий FeII 4924 Å и FeI 4921 Å.


Отношения глубин абсорбций FeII/FeI, свойственные спектру $BD-6^{\circ}1178$, наблюдаются в интервале классов МК от F4V до G0I. Но показатель цвета $BD-6^{\circ}1178$ ($B-V\approx0.44-0.47$) ограничивает

спектральный класс: он должен быть не позднее F6 V-III или F7 II-I, поэтому вариант сверхгиганта должен быть отброшен. Это видно и из спектра низкого разрешения BD-6°1178, приведенного в статье [7]: бленда ИК-триплета кислорода OI 7774 Å в нем значительно слабее, чем в спектрах F-сверхгигантов. По нашему спектру от 13.11.05 (фаза, близкая к соединению компонентов) средний спектральный класс системы F5 IV, по остальным спектрам для главного компонента спектральный класс немного позднее, а светимость выше, чем для вторичного: F5 IV-III и F3V, соответственно. Межзвездное поглощение мало, причем не только для $BD-6^{\circ}1178$ (не более 0.15^{m}), но и для соседних звезд. С его учетом и, конечно, с учетом двойственности звезды, расстояние до нее около 450 пк.


В спектре сверхгиганта на стадии post-AGB можно было бы ожидать аномальных значений эквивалентных ширин линий химических элементов, содержания которых подвержены изменениям в ходе эволюции звезды. Это относится прежде всего к элементам CNO-группы и тяжелым металлам, ядра которых синтезируются в процессах медленной нейтронизации (Sr, Y, Zr, Ba). Однако, сопоставляя спектр BD-6°1178 со спектрами непроэволюционировавших звезд близких спектральных классов, мы не нашли серьезных различий. Для иллюстрации на Рис. 4 сопоставлены фрагменты спектров $BD-6^{\circ}1178$ и Проциона (F5IV-V), содержащие линии BaII $\lambda 5853$ Å и CI $\lambda 5380$ Å. Taким образом мы получили дополнительное подтверждение нашей спектральной классификации $BD-6^{\circ}1178$ как системы из звезд низкой светимости.

3.3. Проблема эволюционного статуса BD-6°1178

Выше мы отмечали ограниченность опубликованных сведений о $BD-6^{\circ}1178$. Необходимо также подчеркнуть противоречивость определений расстояния до звезды и ее эволюционного статуса: Фьюджи и др. [8] классифицировали $BD-6^{\circ}1178$ как post-AGB звезду на расстоянии около $10\,\mathrm{knk}$,

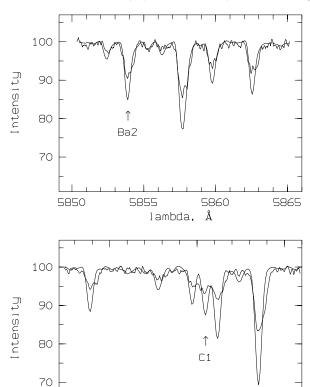

Рис. 2. Профили линий $H\alpha$ (9.03.04) и $H\beta$ (24.09.05, тонкая линия). Вертикальной штриховой линией указана принятая величина $V_{sys} \approx 25 \, \text{кm/c}$.

Рис. 3. Зависимость отношения центральных глубин абсорбций R(FeII 4924)/R(FeI 4921) от спектрального класса и класса светимости. Заполненные кружки — класс светимости V, открытые — IV-III, крестики — II-I. Штриховой линией нанесено отношение глубин для $BD-6^{\circ}1178$ в фазе слияния компонентов 13.11.05.

в то время как Суарец и др. [15] по оптическим спектрам низкого разрешения отнесли ее к молодым звездам. Наша оценка расстояния до этой пары — порядка 450 пк — согласуется с результатами из [15].

Гарсиа-Ларио и др. [22] получили и проанализировали фотометрические данные в ближнем ИКдиапазоне для обширной выборки из 225 источников, включая источник IRAS 05238—0626. Оказалось, что на двуцветной диаграмме (H-K, J-H)

Рис. 4. Линии ВаІІ λ 5853 Å и СІ λ 5380 Å в спектрах ВD -6° 1178 (13.11.05, толстая линия) и Проциона (тонкая линия).

lambda, Å

5380

5385

5375

IRAS 05238—0626 попадает в область, преимущественно заселенную post-AGB звездами. Однако, в этой области не исключено присутствие и молодых звезд типа Т Таи и Ае/Ве Хербига. В связи с этим авторы [22] пришли к выводу о неопределенности эволюционного статуса IRAS 05238—0626: или post-AGB, или TTau.

В Табл. 4 работы [8], где дана сводка параметров 26 кандидатов в PPN, источник IRAS 05238 — 0626 выделяется достаточно высокой эффективной температурой и низким темпом потери вещества. Последнее обстоятельство противоречит тому, что на диаграмме ИК-цветов Вена-Хабинга [23] этот источник попадает в область IV. По определению [23], в этой области диаграммы локализованы переменные звезды с большой потерей вещества, создающей мощную околозвездную оболочку. Кроме того, источник IRAS 05238 — 0626 отличается от типичных PPN и низким ИК-потоком. Поток в полосе λ 12мкм F_{12} =0.59 Ју, что на 1—1.5 порядка ниже, чем у таких хорошо изученных роst-AGB объектов, как IRAS 04296+3429

 $(F_{12}=12.74 \text{ Jy})$, IRAS 23304+6147 $(F_{12}=8.56 \text{ Jy})$, IRAS 07331+0021 $(F_{12}=15.32 \text{ Jy})$.

Редди и Партасарати [7], изучив выборку из 14 кандидатов в PPN, в том числе и $BD-6^{\circ}1178$, пришли к выводу, что $BD-6^{\circ}1178$ — это далеко проэволюционировавшая post-AGB звезда, у которой наблюдается остывший остаток околозвездной оболочки. Принимая типичную для post-AGB звезды массу ядра $0.6\mathcal{M}_{\odot}$, Редди и Партасарати [7] пришли к высокой оценке светимости $\lg(L/L_{\odot}) = 3.79$ и, соответственно, к большой удаленности звезды от Солнца (7 кпк). При этом авторы [7] отметили отсутствие источников молекулярного излучения, ассоциированных с $BD-6^{\circ}1178$, в то время как для post-AGB звезд характерно присутствие теплового и мазерного излучения молекул CO, SiO, H_2O и др. (см. ссылки в обзорах [10, 24]). Например, уже упомянутые нами ИК-источники IRAS 04296+3429 и 23304+6147 являются мощными источниками СО-излучения [25]. Более того, наличие молекулярных деталей, сменяющих друг друга в ходе эволюции PPN, позволило Льюису [26] проследить закономерности в хронологической последовательности молекулярных спектров у звезд в разных фазах эволюции после AGB.

С учетом перечисленных фактов и результатов нашей спектральной классификации, мы предположили, что спектрально-двойная звезда $BD-6^{\circ}1178 (F5 IV-III+F3V)$ может быть молодым объектом диска Галактики. Обратим внимание на то, что координаты и расстояние порядка 450 пк позволяют заподозрить принадлежность $BD-6^{\circ}1178$ к ассоциации Ori OB1. Согласно сводке [27] расстояний до звездных ассоциаций, определенных по данным Hipparcos, подгруппа 1c в ассоциации Ori OB1 удалена от Солнца на 506 ± 37 пк. Отметим также, что принятая величина V_{sus} и измеренные скорости для компонентов межзвездных линий NaI(1) не противоречат значениям скоростей (15-28 км/с), взятым из базы данных SIMBAD для 19 звезд в радиусе 2.5° от $BD-6^{\circ}1178$ в интервале расстояний 0.2-0.7 кпк.

Ранее Торрес и др. [16], исследуя выборку кандидатов в звезды типа T Таи, включили в нее и $BD-6^{\circ}1178$. На основе анализа спектральных и фотометрических данных, они нашли 17 новых звезд типа T Таи и 13 новых звезд типа He/Be Хербига. Однако ни в одну из этих групп они не смогли включить $BD-6^{\circ}1178$, отнеся ее к группе объектов смешанного типа ("miscellaneous").

В целом, мы не видим оснований относить $BD-6^{\circ}1178$ к звездам на стадии post-AGB. Отметим также, что обнаружение спектральной двойственности типа SB2 дает нам дополнительный повод сомневаться в классификации $BD-6^{\circ}1178$

как роst-AGB звезды, поскольку среди известных звезд на этой эволюционной стадии нет двойных SB2. Ряд роst-AGB звезд являются двойными системами SB1. Природа невидимого компаньона неизвестна, так как его спектральные детали в спектрах двойных роst-AGB звезд не наблюдаются. Хорошо изученным [28] примером двойной системы среди роst-AGB звезд может служить HD 101584. Эта система содержит горячую роst-AGB звезду B9 II и маломассивный компаньон неизвестной природы. Это может быть либо белый карлик, либо маломассивная звезда ГП [28].

4. ВЫВОДЫ

Результаты количественной спектральной классификации звезды $BD-6^{\circ}1178$ привели к выводу о ее спектральной двойственности. Оба компонента являются F-звездами: $F5\,IV-III+F3V$. Для 4-х моментов наблюдений измерены величины гелиоцентрической лучевой скорости обоих компонентов двойной системы. Мы не получили оснований для классификации $BD-6^{\circ}1178$ как post-AGB звезды. Координаты $BD-6^{\circ}1178$ и расстояние до нее $450\,$ пк позволяют предположить ее членство в ассоциации Ori OB1. Таким образом, $BD-6^{\circ}1178$ может быть молодым объектом диска Галактики на стадии до $\Gamma\Pi$.

БЛАГОДАРНОСТИ

Авторы благодарны В. Е. Панчуку и М. В. Юшкину за помощь в наблюдениях на БТА. Работа выполнена при поддержке Российского Фонда Фундаментальных Исследований (проект 08-02-00072 а), программы фундаментальных исследований Отделения физических наук РАН "Протяженные объекты во Вселенной" и программы Президиума РАН "Происхождение и эволюция звезд и галактик". В работе использованы базы данных SIMBAD и CDS Страсбургского центра астрономических данных.

СПИСОК ЛИТЕРАТУРЫ

- 1. V. G. Klochkova, Monthly Notices Roy. Astronom. Soc. 272, 710 (1995).
- 2. V. G. Klochkova, R. Szczerba, V. E. Panchuk and K. Volk, Astronom. and Astrophys. **345**, 905 (1999).
- 3. В. Г. Клочкова, Р.Щерба, В. Е. Панчук, Письма в АЖ **26**, 115 (2000).
- 4. В. Г. Клочкова, Р.Щерба, В. Е. Панчук, Письма в АЖ **26**, 510 (2000).

- 5. V. G. Klochkova and T. Kipper, Baltic Astron. **15**, 395 (2006)
- P. Garcia-Lario, A. Manchado, S. R. Pottash, et al., Astronom. and Astrophys. Suppl. Ser. 82, 497 (1990).
- B. E. Reddy and M. Parthasarathy, Astronom. J. 112, 2053 (1996).
- 8. T. Fujii, Y. Nakada and M. Parthasarathy, Astronom. and Astrophys. **385**, 884 (2002).
- 9. T. Blöcker, Astrophys. and Space Sci. **275**, 241 (2001)
- V. G. Klochkova, Bull. Spec. Astrophys. Obs. 44, 127 (1997).
- L. Decin, H. Van Winckel, C. Waelkens and E. J. Bakker, Astronom. and Astrophys. 332, 928 (1998).
- V. G. Klochkova, V. E. Panchuk, E. L. Chentsov and M. V. Yushkin, Bull. Spec. Astrophys. Obs. 62, 217 (2007).
- 13. В. Г. Клочкова, В. Е. Панчук, Н. С. Таволжанская, Pis'ma Astronom. Zh. **28**, 49 (2002).
- P. R. Wozniak, W. T. Vestrand, C. W. Akerlof, et al., Astronom. J. 127, 2436 (2004).
- O. Suárez, P. Garcia-Lario, A. Manchado, et al., Astronom. and Astrophys. 458, 173 (2006).
- C. A. O. Torres, G. Quast, A. de la Reza, et al., Astronom. J. 109, 2146 (1995).
- V. Panchuk, V. Klochkova, M. Yushkin and I. D. Najdenov, in *The UV Universe: stars from birth to death. Proceedings of the Joint Discussion No. 4 during the IAU General Assembly of 2006*. Eds. A. I. Gomez de Castro and M. A. Barstow., p. 179 (2007).
- 18. М. В. Юшкин, В.Г. Клочкова, Препринт № 206 (CAO PAH, Нижний Архыз, 2005).
- 19. D. Montes and E. L. Martin., Astronom. and Astrophys. Suppl. Ser. 128, 485 (1998).
- V. G. Klochkova, G. Zhao, V. E. Panchuk and S. V. Ermakov., Chinese J. Astronom. and Astrophys. 4, 279 (2004).
- 21. P. Prugniel and C. Soubiran, astro-ph/0409214.
- 22. P. Garcia-Lario, A. Manchado, W. Pych and S. R. Pottash, Astronom. and Astrophys. Suppl. Ser. **126**, 479 (1997).
- 23. W. E. C. J. van der Veen and H. J. Habing, Astronom. and Astrophys. **194**, 125 (1988).
- 24. S. Kwok, Astronom. Astrophys. Rev. **31**, 63 (1993).
- B. J. Hrivnak and J. H. Bieging, Astrophys. J. **624**, 331 (2005).
- 26. B. M. Lewis., Astrophys. J. 338, 234 (1989).
- 27. P. T. de Zeeuw, R. Hoogerwerf and J. H. J. de Bruijne, Astrophys. J. 117, 354 (1999).
- 28. E. J. Bakker, H. J. G. L. M. Lamers, L. B. F. M. Waters, et al., Astronom. and Astrophys. **307**, 869 (1996).

DETECTION OF THE SPECTROSCOPIC BINARY (SB2) NATURE OF BD-6°1178 = IRAS 05238-0626

V. G. Klochkova, E. L. Chentsov

The star BD $-6^{\circ}1178$, which is identified with the IRAS 05238-0626 source, is shown for the first time to be a spectroscopic binary (SB2) by analyzing the high-resolution spectra taken with the NES echelle spectrograph of the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The components of the binary have close spectral types and luminosity classes: F5 IV-III and F3 V. The heliocentric radial velocities are measured for both components at four time instants in 2004-2005. The two stars have close rotation velocities, which are equal to 24 and 19 km/s. We do not confirm the classification of BD $-6^{\circ}1178$ as a supergiant in the state of becoming a planetary nebula. BD $-6^{\circ}1178$ probably is a young pre-MS stars. It is possibly a member of the 1c subgroup of the Ori OB1 association.